QHW Designation: C 1239 — 00

Standard Practice for
Reporting Uniaxial Strength Data and Estimating Weibull
Distribution Parameters for Advanced Ceramics 1

This standard is issued under the fixed designation C 1239; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonej indicates an editorial change since the last revision or reapproval.

1. Scope Outlying Observations 6

1.1 This practice covers the evaluation and §ub§equemgf§ritﬁ‘§22§°d Parameter Estimators for Competing !
reporting of uniaxial strength data and the estimation Ofunbiasing Factors and Confidence Bounds 8
probability distribution parameters for advanced ceramics thaftractography 9
fail in a britle fashion. The failure strength of advanced oo ce »
ceramics is treated as a continuous random variable. Typically,omputer Algorithm MAXL X1
a number of test specimens with well-defined geometry aréest Specimens with Unidentified Fracture Origins X2

failed under well-defined isothermal loading conditions. The 1.4 The values stated in SI units are to be regarded as the
load at which each specimen fails is recorded. The resultingtandard.

failure stresses are used to obtain parameter estimates associ-
ated with the underlying population distribution. This practice2. Referenced Documents
is restricted to the assumption that the distribution underlying 2.1 ASTM Standards:
the failure strengths is the two-parameter Weibull distribution C 1145 Terminology of Advanced Ceranfics
with size scaling. Furthermore, this practice is restricted to test C 1322 Practice for Fractography and Characterization of
specimens (tensile, flexural, pressurized ring, etc.) that are Fracture Origins in Advanced Ceramics
primarily subjected to uniaxial stress states. Section 8 outlines D 4392 Terminology for Statistically Related Terins
methods to correct for bias errors in the estimated Weibull E 6 Terminology Relating to Methods of Mechanical Test-
parameters and to calculate confidence bounds on those esti- ing*
mates from data sets where all failures originate from a single E 178 Practice for Dealing With Outlying Observati®ns
flaw population (that is, a single failure mode). In samples E 456 Terminology Relating to Quality and Statistics
where failures originate from multiple independent flaw popu- 2.2 Military Handbook:
lations (for example, competing failure modes), the methods MIL-HDBK-790 Fractography and Characterization of
outlined in Section 8 for bias correction and confidence bounds  Fracture Origins in Advanced Structural Cerarfiics
are not applicable.

1.2 Measurements of the strength at failure are taken for ond. Terminology
of two reasons: either for a comparison of the relative quality 3.1 Proper use of the following terms and equations will
of two materials, or the prediction of the probability of failure alleviate misunderstanding in the presentation of data and in
(or, alternatively, the fracture strength) for a structure ofthe calculation of strength distribution parameters.
interest. This practice will permit estimates of the distribution 3.1.1 censored strength datastrength measurements (that
parameters that are needed for either. In addition, this practide, a sample) containing suspended observations such as that
encourages the integration of mechanical property data angfoduced by multiple competing or concurrent flaw popula-

fractographic analysis. tions.
1.3 This practice includes the following: 3.1.1.1 Consider a sample where fractography clearly estab-
Section lished the existence of three concurrent flaw distributions
26?99 . t ; (although this discussion is applicable to a sample with any
T;:;:ﬁg;; ocuments 3 number of concurrent flaw distributions). The three concurrent
Summary of Practice 4 flaw distributions are referred to here as distributigng, and
Significance and Use 5 C. Based on fractographic analyses, each specimen strength is
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assigned to a flaw distribution that initiated failure. In estimat-in the component being designed. An example is machining
ing parameters that characterize the strength distribution asstiaws in ground bend specimens that will not be present in
ciated with flaw distributionA, all specimens (and not just as-sintered components of the same material.

those that failed from Type A flaws) must be incorporated in  3.2.8 fractography—the analysis and characterization of
the analysis to ensure efficiency and accuracy of the resultingatterns generated on the fracture surface of a test specimen.
parameter estimates. The strength of a specimen that failed Iptactography can be used to determine the nature and location
a Type B (or Type C) flaw is treated asraht censored of the critical fracture origin causing catastrophic failure in an
observation relative to tha flaw distribution. Failure due to a advanced ceramic test specimen or component.

Type B (or Type C) flaw restricts, or censors, the information 3 5 g myltiple flaw distributions-strength controlling flaws
concerning Type A flaws in a specimen by s7uspend|ng the tegpserved by fractography where distinguishably different flaw
before failure occurred by a Type A fla@).” The strength  yhes are identified as the failure initiation site within different
from the most severe Type A flaw in those specimens thafecimens of the data set and where the flaw types are known
failed from Type B (or Type C) flaws is higher than (and thus,, expected to originate from independent causes.

to theright of) the observed strength. However, no information 3.2.9.1 Discussior—An example of multiple flaw distribu-

is provided regardl'ng the r.“agn'“.lde of that d'ﬁerence' Ce.nfions would be carbon inclusions and large voids which may
sored data analysis techniques incorporated in this practi

utilize this incomplete information to brovide efficient andc&)th have been observed as strength controlling flaws within a
relativel unbiaseg estimates of the disFt)ribution arameters data set and where there is no reason to believe that the
3.2 DgfinitionS' P " frequency or distrubution of carbon inclusions created during

3.2.1 competing failure modesdistinguishably different Leilgtrrli(;)it;%?] \gfa \S/olig Sa('g \\;\{:g_viigz)n dent on the frequency or

es of fracture initiation events that result from concurrent : . . .
P 3.2.10 population—the totality of potential observations

(competing) flaw distributions. S
3.2.2 compound flaw distributiorsany form of multiple ~@°out which inferences are made.

flaw distribution that is neither pure concurrent nor pure 3-2.11population mean-the average of all potential mea-
exclusive. A simple example is where every specimen containgurements in a given population weighted by their relative
the flaw distributionA, while some fraction of the specimens frequencies in the population.
also contains a second independent flaw distribuBon 3.2.12 probability density functior-the functionf (x) is a
3.2.3 concurrent flaw distributions-a type of multiple flaw  probability density function for the continuous random variable
distribution in a homogeneous material where every specimeX if:
of that material contains representative flaws from each inde- f(x) =0
pendent flaw population. Within a given specimen, all flaw (1)
populations are then present concurrently and are competing
with each other to cause failure. This term is synonymous with and
""competing flaw distributions.” f* f(x)dx=1 )
3.2.4 effective gage sectienthat portion of the test speci- -
men geometry that has been included within the limits of
integration (volume, area, or edge length) of the Weibull The probability that the random variab¥eassumes a value
distribution function. In tensile specimens, the integration maybetweena andb is given by the following equation:
be restricted to the uniformly stressed central gage section, or b
it may be extended to include transition and shank regions. Pra<X<b) = fa ) dx
3.2.5 estimator—a well-defined function that is dependent 3
on the observations in a sample. The resulting value for a given

sample may be an estimate of a distribution parameter (a point 3.2.13 sample—a collection of measurements or observa-
estimate) associated with the underlying population. The arithtions taken from a specified population.

metic average of a sample is, for example, an estimator of the 3 5 14 skewness-a term relating to the asymmetry of a

distribution mean. o _ probability density function. The distribution of failure
3.2.6 exclusive flaw distributiors-a type of multiple flaw  gyength for advanced ceramics is not symmetric with respect

distribution created by_ mixing and ra}ndomizing specime_n% the maximum value of the distribution function but has one
from two or more versions of a material where each version i longer than the other.

contains a different single flaw population. Thus, each speci- . L : .
men contains flaws exclusively from a single distribution, but 3.2.15 statistical bias—inherent to most estimates, this is a

the total data set reflects more than one type of strengtf{ype of consistent numerical offset in an estimate relative to the

controlling flaw. This term is synonymous wittmixtures of rue underlying value. The ”?ag'.‘"“de of the bias error typically
LY " decreases as the sample size increases.
flaw distributions.

3.2.7 extraneous flaws-strength-controlling flaws ob- 3.2.16 unbiased estimateran estimator that has been cor-
served in some fraction of test specimens that cannot be preseffcted for statistical bias error.
3.2.17 Weibull distributior—the continuous random vari-
“ The boldface numbers in parentheses refer to the list of references at the end gpIeX has a two-pgrar_netgr Weibull dIStl‘Ibuf[IOl’] if the. prob-
this practice. ability density function is given by the following equations:



iy c 1239

fx) = (T)(})m’lexr{_G) ”’] 0 4 Ported using units of MPa-(fH}' or GPa-(m)¥™ if the
B/\B B strength-controlling flaws are distributed through the volume
of the material. If the strength-controlling flaws are restricted
fx) =0 x=0 (5)  to the surface of the specimens in a sample, then the Weibull
material scale parameter should be reported using units of
MPa-(m)Zlm or GPa-(m¥f'™. For a given specimen geometry, Eq
o 8 and Eq 10 can be equated, which yields an expression
Fx)=1— ex;{ — <§> ] x>0 (6) relatingo 0 andao,. Further discussion related to this issue can
be found in 7.6.

or 3.3 For definitions of other statistical terms, terms related to
Fx)=0 x=0 (7)  mechanical testing, and terms related to advanced ceramics
used in this practice, refer to Terminologies D 4392, E 456,

where ; ;
. C 1145, and E 6 or to appropriate textbooks on stati¢#845
m = Weibull modulus (or the shape parameter) (>0), and ppropri X S on statisHsdS)

B = scale parameter (>0).

3.2.18 The random variable representing uniaxial tensile
strength of an advanced ceramic will assume only positive
values, and the distribution is asymmetrical about the meana specimen area (or area of effective gage section, if
These characteristics rule out the use of the normal distribution used).

(as well as others) and point to the use of the Weibull andb gage section dimension, base of bend test specimen.
similar skewed distributions. If the random variable represent-d gage section dimension, depth of bend test speci-
ing uniaxial tensile strength of an advanced ceramic is char- men.

acterized by Eq 4-7, then the probability that this advancedF(x) = cumulative distribution function.

ceramic will fail under an applied uniaxial tensile stresss ~ f(X) probability density function.

and the cumulative distribution function is given by the
following equations:

3.4 Symbols:

given by the cumulative distribution function as follows: Li length of the inner load span for a bend test
" specimen.
ple_exp[_<c_> m]g>o (8) L, = length of the outer load span for a bend test
b specimen.
£ = likelihood function.
Pi=0 o=0 ® m = Weibull modulus.
where: rjw = estimate of the Weibull modulus.
P, = probability of failure, and m, = unblased 1fesnma'\te of the We|buIII modulus.
o, = Weibull characteristic strength. N B number Of SpeCimens in a sample.
. . _ P: = probability of failure.

Note that the Weibull characteristic strength is dependent ory = number of specimens that failed from the flaw
the uniaxial test specimen (tensile, flexural, or pressurized ring) population for which the Weibull estimators are
and will change with specimen size and geometry. In addition, being calculated.
the Weibull characteristic strength has units of stress and = intermediate quantity defined by Eq 27, used in
should be reported using units of megapascals or gigapascals. calculation of confidence bounds.

3.2.19 An alternative expression for the probability of V. = specimen volume (or volume of effective gage
failure is given by the following equation: section, if used).

- X = random variable.
P, = 1—exp[ —fv<0—> mdv] a>0 (10) X = realization of a random variabé.
0 B = Weibull scale parameter.
P —0 0=0 (11) € = stopping tolerance in the computer algorithm

MAXL.

estimate of mean strength.

uniaxial tensile stress.

maximum stress in thigh test specimen at failure.

The integration in the exponential is performed over all 1
tensile regions of the specimen volume if the strength-o
controlling flaws are randomly distributed through the volume ;i I In I I
of the material, or over all tensile regions of the specimen are; maximum stress in thigh test specimen at failure.
if flaws are restricted to the specimen surface. The integratiorf’o Weibull material scale parameter (strength relative
is sometimes carried out over an effective gage section instead to unit size) defined in Eq 10. . .
of over the total volume or area. In Eq 16, is the Weibull %o Weibull qharacten;hc ;trength (associated with a
material scale parameter. The parameter is a material property test specm;err:) defl_netljl in Eq .8'| |
if the two-parameter Weibull distribution properly describes - © estimate Of the We!gu” mhatena scale paramre],-ter.
the strength behavior of the material. In addition, the Weibull %o estimate of the Weibull characteristic strength.
material scale parameter can be described as the WeibuAI
characteristic strength of a specimen with unit volume or area”
loaded in uniform uniaxial tension. The Weibull material scale 4.1 This practice enables the experimentalist to estimate
parameter has units of stress:(volutffégnd should be re- Weibull distribution parameters from failure data. Begin by

Summary of Practice
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performing a fractographic examination of each failed speciis reached when the cost of performing additional strength tests
men (optional, but highly recommended) in order to characimay not be justified. This suggests that a practical number of
terize fracture origins. Usually discrete fracture origins can bestrength tests should be performed to obtain a desired level of
grouped by flaw distributions. Screen the data associated witbonfidence associated with a parameter estimate. The number
each flaw distribution for outliers. Compute estimates of theof specimens needed depends on the precision required in the
biased Weibull modulus and Weibull characteristic strength. Iresulting parameter estimate. Details relating to the computa-
necessary, compute the estimate of the mean strength. If dlbn of confidence bounds (directly related to the precision of
failures originate from a single flaw distribution, compute anthe estimate) are presented in 8.3 and 8.4.
unbiased estimate of the Weibull modulus and compute confi- . .
dence bounds for both the estimated Weibull modulus and th§ Outlying Observations
estimated Weibull characteristic strength. Prepare a graphical 6.1 Before computing the parameter estimates, the data
representation of the failure data along with a test report.  should be screened for outlying observations (outliers). An
o outlying observation is one that deviates significantly from
5. Significance and Use other observations in the sample. It should be understood that
5.1 Advanced ceramics usually display a linear stress-straian apparent outlying observation may be an extreme manifes-
behavior to failure. Lack of ductility combined with flaws that tation of the variability of the strength of an advanced ceramic.
have various sizes and orientations leads to scatter in failurg this is the case, the data point should be retained and treated
strength. Strength is not a deterministic property but insteads any other observation in the failure sample. However, the
reflects an intrinsic fracture toughness and a distribution (sizeutlying observation may be the result of a gross deviation
and orientation) of flaws present in the material. This practicdrom prescribed experimental procedure or an error in calcu-
is applicable to brittle monolithic ceramics that fail as a resultlating or recording the numerical value of the data point in
of catastrophic propagation of flaws present in the materialquestion. When the experimentalist is clearly aware that a gross
This practice is also applicable to composite ceramics that ddeviation from the prescribed experimental procedure has
not exhibit any appreciable bilinear or nonlinear deformationoccurred, the outlying observation may be discarded, unless the
behavior. In addition, the composite must contain a sufficienbbservation can be corrected in a rational manner. The proce-
quantity of uniformly distributed reinforcements such that thedures for dealing with outlying observations are detailed in
material is effectively homogeneous. Whisker-toughened cePractice E 178.
ramic composites may be representative of this type of
material. 7. Maximum Likelihood Parameter Estimators for
5.2 Two- and three-parameter formulations exist for the Competing Flaw Distributions
Weibull distribution. This practice is restricted to the two- 7.1 This practice outlines the application of parameter
parameter formulation. An objective of this practice is to obtainestimation methods based on the maximum likelihood tech-
point estimates of the unknown parameters by using wellnique. This technique has certain advantages, especially when
defined functions that incorporate the failure data. Thes@arameters must be determined from censored failure popula-
functions are referred to as estimators. It is desirable that ations. When a sample of test specimens yields two or more
estimator be consistent and efficient. In addition, the estimatodistinct flaw distributions, the sample is said to contain
should produce unique, unbiased estimates of the distributiocensored data, and the associated methods for censored data
parameterg6). Different types of estimators exist, including must be employed. Fractography (see Section 9) should be
moment estimators, least-squares estimators, and maximunsed to determine whether multiple flaw distributions are
likelihood estimators. This practice details the use of maximunpresent. The methods described in this practice include cen-
likelihood estimators due to the efficiency and the ease oforing techniques that apply to multiple concurrent flaw
application when censored failure populations are encounteredistributions. However, the techniques for parameter estima-
5.3 Tensile and flexural specimens are the most commonliion presented in this practice are not directly applicable to data
used test configurations for advanced ceramics. The observeédts that contain exclusive or compound multiple flaw distri-
strength values are dependent on specimen size and geometoytions(7). The parameter estimates obtained using the maxi-
Parameter estimates can be computed for a given specimemum likelihood technique are unique (for a two-parameter
geometry (M, & ,), but it is suggested that the parameterWeibull distribution), and as the size of the sample increases,
estimates be transformed and reported as material-specifibe estimates statistically approach the true values of the
parametersif, G,). In addition, different flaw distributions (for population.
example, failures due to inclusions or machining damage) may 7.2 This practice allows failure to be controlled by multiple
be observed, and each will have its own strength distributiorilaw distributions. Advanced ceramics typically contain two or
parameters. The procedure for transforming parameter estinore active flaw distributions each with an independent set of
mates for typical specimen geometries and flaw distributions iparameter estimates. The censoring techniques presented
outlined in 7.6. herein require positive confirmation of multiple flaw distribu-
5.4 Many factors affect the estimates of the distributiontions, which necessitates fractographic examination to charac-
parameters. The total number of test specimens plays trize the fracture origin in each specimen. Multiple flaw
significant role. Initially, the uncertainty associated with pa-distributions may be further evidenced by deviation from the
rameter estimates decreases significantly as the number of tdisiearity of the data from a single Weibull distribution (for
specimens increases. However, a point of diminishing returnexample, Fig. 1). However, since there are many exceptions,
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7.3.1.1 Option a—Assigned a previously identified flaw
9~ distribution using inferences based on all available fracto-
90 |- graphic information,
80— 7.3.1.2 Option b—Assigned the same flaw distribution as
R ol that of the specimen closest in strength,
a 7.3.1.3 Option c—Assigned a new and as yet unspecified
g 20 flaw distribution, and
= 10 7.3.1.4 Option d—Be removed from the sample.
; Note 2—The user is cautioned that the use of any of the options
= 5+ outlined in_7_.3.l for the classificatiqn of sp_ecimens v_vith unidentified
_g fracture origins may create a consistent bias error in the parameter
o estimates. In addition, the magnitude of the bias cannot be determined by
o = the methods presented in 8.2
5 /— (G)a=693MPa 7.3.2 A discussion of the appropriateness of each option in
| i | /] (1 1 1 | 7.3.1 is given in Appendix X2. If the strength data and the
350 400 450 500 550 600 700 800 resulting parameter estimates are used for component design,
Fracture stress, o, MPa the engineer must consult with the fractographer before and

after performing the fractographic examination. Considerable
judgement may be needed to identify the correct option.
Whenever partial fractographic information is available,
7.3.1.1is strongly recommended, especially if the data are used

. . . ) for component design. Conversely, 7.3.1.4 is not recommended
observations of approximately linear behavior should not bg,y this practice unless there is overwhelming justification.

considered sufficient reason to conclude that only a single flaw”- , 14 jikelihood function for the two-parameter Weibull

distribution is active. T . - -
. . . . distribution of a censored sample is defined by the followin
7.2.1 For data sets with multiple active flaw dlstrlbutlonsequation(g). P Y g

where one flaw distribution (identified by fractographic analy- ) ) )
sis) occurs in a small number of specimens, it is sufficient to ff{ i (E) (g)mflexr{{g)m]} 0 exp[_<g>m]
report the existence of this flaw distribution (and the number of i=1\ 99/ \ o T j=r+t T
occurrences), but it is not necessary to estimate Weibull
parameters. Estimates of the Weibull parameters for this flaw This expression is applied to a sample where two or more
distribution would be potentially biased with wide confidenceactive concurrent flaw distributions have been identified from
bounds (neither of which could be quantified through use ofractographic inspection. For the purpose of the discussion
this practice). However, special note should be made in théere, the different distributions will be identified as flaw Types
report if the occurrences of this flaw distribution take place inA, B, C, etc. When Eq 12 is used to estimate the parameters
the upper or lower tail of the sample strength distribution.  associated with the A flaw distribution, thers the number of

7.3 The application of the censoring techniques presented ispecimens where Type A flaws were found at the fracture
this practice can be complicated by the presence of tesirigin, andi is the associated index in the first summation. The
specimens that fail from extraneous flaws, fractures thasecond summation is carried out for all other specimens not
originate outside the effective gage section, and unidentifiedailing from type A flaws (that is, Type B flaws, Type C flaws,
fracture origins. If these complications arise, the strength datetc.). Therefore, the sum is carried out frgnx ¢ + 1) toN (the
from these specimens should generally not be discardedotal number of specimens) wherés the index in the second
Strength data from specimens with fracture origins outside theummation. Accordinglyy; ando; are the maximum stress in
effective gage sectio(8), and specimens with fractures that theith andjth test specimen at failure. The parameter estimates
originate from extraneous flaws should be censored; and thghe Weibull modulush and the characteristic strengty) are
maximum likelihood methods presented in this practice areletermined by taking the partial derivatives of the logarithm of
applicable. the likelihood function with respect téh andé , and equating

Note 1—In this standard the gage section in four-point flexure is takenthe rgsultlng expressions to Zero.' Note Wiatis a fl.mcnon of
to mean the region between the two outer loading rollers. specimen geometry and the estimate of the Weibull modulus.

. . . - - Expressions that relaté, to the Weibull material scale
7.3.1 Specimens with unidentified fracture origins some- P o

. o . . ... _jparametefy, for typical specimen geometries are given in 7.6.
times occur. It is imperative that the number of unidentifiedg; o “the Jikelihood function for the two-parameter Weibull
fracture origns, and hQW they were classmed,.be stated in thBistribution for a single-flaw population is defined by the
test report. This practice recognizes four options the eXPeTigyiowing equation:

mentalist can pursue when unidentified fracture origins are

Note 1—The boxes refer to surface flaws; the circles refer to volume,
flaws.
FIG. 1 Example—Failure Data in Section 10.2

encountered during fractographic examinations. The situation @ 0 <ﬁ)<g>m_lex;{ _ (g)f“]

may arise where more than one option will be used within a i=1\ T/ \ O T

single data set. Specimens with unidentified fracture origins (13)
can be: wherer was taken equal tdl in Eq 12.
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7.5 The system of equations obtained by maximizing the log le L }
likelihood function for a censored sample is given by the ' :
followi tiong10):
otowing equaNlons( ) l Test specimen J f I]E
S @) . © Y o
————2 (o) —7=0 (14) | |
- i=1 L
20" | ° !
=1 FIG. 2 Flexural Specimen Geometry
and
N 1] L\ . UV
7= | G ] M) ma)
(15) (Toly = (Toly B (18)
where: where:
r = number of failed specimens from a particular group of L, = length of the inner load span,
a censored sample. L, = length of the outer load span,
V = volume of the gage section defined by the following
When a sample does not require censorinig, replaced by expression:
Nin Eq 14 and Eq 15. Eq 14 is solved first for Subsequently V=bdl, (19)

G, is computed from Eqg 15. Obtaining a closed-form solution

of Eq 14 forfnis not possible. This expression must be solved@nd: o

numerically. When there are multiple active flaw populations, :d = dimensions identified in Fig. 2. _

Eq 14 and Eq 15 must be solved for each flaw population. A For fracture origins spaually dlst_rlb_uted strictly at the
computer algorithm (entitled MAXL) that calculates the root of Surface of a flexural specimen and within the outer load span,
Eq 14 is presented as a convenience in Appendix X1. the following equation applies:

7.6 The numerical procedure in accordance with 7.5 yields <_.> )+ 1 Loy A
parameter estimates of the Weibull modulushf and the Gom=(Goal L < _d +b> L) "*
characteristic strength &,). Since the characteristic strength ATRTOAL T M+ 1 (Ma+1 20
also reflects specimen geometry and stress gradients, this (20)

standard suggests reporting the estimated Weibull material 7-6.3 Test specimens other than tensile and flexure speci-
scale parametef,. mens may be utilized. Relationships between the estimate of

the Weibull characteristic strength and the Weibull material
scale parameter for any specimen configuration can be derived
i by equating the expressions defined by Eq 8 and Eq 10 with the
(Bolv = V" ™Gy (16)  modifications that follow. Begin by replacing (an applied
uniaxial tensile stress) in Eq 8 with ,,,,, which is defined as
whereV is the volume of the uniform gage section of the the maximum tensile stress within the test specimen of interest.

tensile specimen, and the fracture origins are spatially distribThus:

7.6.1 The following equation defines the relationship be
tween the parameters for tensile specimens:

uted strictly within this volume. The gage section of a tensile O e\ ™
specimen is defined herein as the central region of the test Pr=1- exf{ - <0'_e> ]
specimen with the smallest constant cross-sectional area. (21)

However, the experimentalist may include transition regions A|so perform the integration given in Eq 10 such that

and the shank regions of the specimen if the volume (or area) .

integration defined by Eq 10 is analyzed properly. This Pi=1- ex;{ —kV(ULaX) ]

procedure is discussed in 7.6.3. If the transition region or the 7o 22)
shank region, or both, are included in the integration, Eq 16 is
not applicable. For tensile specimens in which fracture origins
are spatially distributed strictly at the surface of the specimen

tested, the following equation applies:

where k is a dimensionless constant that accounts for
pecimen geometry and stress gradients. Note that in general,
is a function of the estimated Weibull modulus, and is
always less than or equal to unity. The producdt)(is often

(Tola= (AYMAT)a (17)  referred to as the effective volume (with the designatii
The effective volume can be interpreted as the size of an
whereA = surface area of the uniform gage section. equivalent uniaxial tensile specimen that has the same risk of

7.6.2 For flexural specimen geometries, the relationship&UPture as the test specimen or component. As the term implies,
become more complexll). The following relationship is (e product represents the volume of material subject to a
based on the geometry of a flexural specimen found in Fig. 24niform uniaxial tensile stresd2). Setting Eq 21 and Eq 22
For fracture origins spatially distributed strictly within both the €dual to one another yields the following expression:
volume of a flexural specimen and the outer load span, the (To)y = KVUNVT ), (23)
following equation applies:
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Thus, for an arbitrary test specimen, the experimentalispertinent dimensions. An estimate of mean strength can also be
evaluates the integral identified in Eq 10 for the effectivedepicted in the graph. The estimate of mean strength |gm is
volume kV), and utilizes Eq 23 to obtain the estimated Weibull calculated by using the arithmetic mean as the estimator in the
material scale parameter,. A similar procedure can be following equation:
adopted when fracture origins are spatially distributed at the N 1
surface of the test specimen. f= (Zl oi)<N>

7.7 An objective of this practice is the consistent represen- (26)
tation of strength data. To this end, the following procedure is : . . .
the recommended graphical representation of strength data, Note that this estimate pf the mean streng_th IS not appropri-
Begin by ranking the strength data obtained from Iaboratonfite for samples with multiple failure populations.
testing in ascending order, and assign to each a rank

probability of failureP; according to the estimator as follows:eéj' Unbiasing Factors and Confidence Bounds

8.1 Paragraphs 8.2 through 8.4 outline methods to correct

P (o) = 'TOB for statistical bias errors in the estimated Weibull parameters
(24) and outlines methods to calculate confidence bounds. The
procedures described herein to correct for statistical bias errors
and to compute confidence bounds are appropriate only for
where ) data sets where all failures originate from a single flaw
N = number of specimens, and population (that is, an uncensored sample). Procedures for bias

i = ith datum. ) , , correction and confidence bounds in the presence of multiple
Compute the natural logarithm of th failure stress, and  active flaw populations are not well developed at this time.
the natural logarithm of the natural logarithm of [1/(IP9] ~ Note that the statistical bias associated with the estin@atis
(that is, _the douple Ioggrlthm of _the quantity in brackets), minimal (<0.3 % for 20 test specimens, as opposee-t%
whereP; is associated with thih failure stress. __ bias for mwith the same number of specimens). Therefore,
7.8 Create a graph representing the data as shown in Fig. dyis practice allows the assumption thag is an unbiased
Plot In {In[1/(1 — Py]; as the ordinate, and laf as the ggtimator of the true population parameter. The parameter
abscissa. A typical ordinate scale assumes values from +2 {Qimate of the Weibull modulus (M) generally exhibits
—6. This approximately corresponds to a range in probability o&atistical bias. The amount of statistical bias depends on the
failure from 0.25 to 99.9 %. The ordinate axis must be labeled, ;mper of specimens in the sample. An unbiased estimate of
as pr_obablhty of failureP;, as de_p|cted in Fig. 1. Similarly_, the ghall be obtained by multiplying by unbiasing factor¢14).
abscissa must be labeled as failure stress (flexural, tensile, etcphis procedure is discussed in the following sections. Statisti-
preferably using units of megapascals or gigapascals. cal bias associated with the maximum likelihood estimators

7.9 Included on the plot should be a line (two or more linesyresented in this practice can be reduced by increasing the
for concurrent flaw distributions) whose position is fixed by thesample size.

estimates of the Weibull parameters. The line is defined by the g 5 An unbiased estimator produces nearly zero statistical

following mathematical equation: bias between the value of the true parameter and the point
. r{ B < >} estimate. The amount of deviation can be quantified either as a
Pi=1-ex = |Mm . . . . :
Ty percent difference or with unbiasing factors. In keeping with
(25)  the accepted practice in the open literature, this practice
The slope of the line, which is the estimate of the Weibullquantifies statistical bias through the use of unbiasing factors,
modulus i, should be identified, as shown in Fig. 1. The denoted here ddF. Depending on the number of specimens in
estimate of the characteristic streng#fy should also be a given sample, the point estimate of the Weibull moduitus
identified. This corresponds toR of 63.2 %, or a value of may exhibit significant statistical bias. An unbiased estimate of
zero for Inlin[1/4(1 — Py)] . Atest report (that is, a data sheet) the Weibull modulus (denoted #s,) is obtained by multiply-
that details the type of material characterized, the test proceng the biased estimate with appropriate unbiasing factor.
dure (preferably designating an appropriate standard), thibiasing factors forh are listed in Table 1. The example in
number of failed specimens, the flaw type, the maximumll.3 demonstrates the use of Table 1 in correcting a biased
likelihood estimates of the Weibull parameters, the unbiasingestimate of the Weibull modulus. As a final note, this procedure
factor, and the information that allows the construction of 90 %is not appropriate for censored samples. The theoretical ap-
confidence bounds is depicted in Fig. 3. This data sheet shoufetoach was developed for uncensored samples wherBl.
accompany the graph to provide a complete representation of 8.3 Confidence bounds quantify the uncertainty associated
the failure data. Insert a column on the graph (in any convewith a point estimate of a population parameter. The size of the
nient location), or alternatively provide a separate table thatonfidence bounds for maximum likelihood estimates of both
identifies the individual strength values in ascending order a%Veibull parameters will diminish with increasing sample size.
shown in Fig. 4(13) This will permit other users to perform The values used to construct confidence bounds are based on
alternative analyses (for example, future implementations opercentile distributions obtained by Monte Carlo simulation.
bias correction or confidence bounds, or both, on multiple flawFor example, the 90 % confidence bound on the Weibull
populations). In addition, the experimentalist should include anodulus is obtained from the 5 and 95 percentile distributions
separate sketch of the specimen geometry that includes aif the ratio offh to the true population valuen. For the point
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Material:

TEST REPORT
Weibull Parameters Calculated Using Maximum Likelihood Estimators

Test method:

Specimen size:

Specimens from:
Single billet O

Multiple billets ]

Component(s) O

Separately made [

Total number of specimens:

FLAW POPULATION 1 Complete the following and report the numbers below
Number of specimens: : if only one flaw population exists:
Flaw identity: L_; >
Spatial dist. (] Volume ; ﬁ:’"’ct m for b:s “f:"ﬁ;’_
O Surface - u= \
O .
Estimates: 90% .ConﬁdAence bounds.A REPORT
A= - {Note: Use m below, not my.) THESE
og= (Weibul! scale parameter) ; m (Table 2) /
G0.05 = mupper = m/qO 05 =
Qo.95 = Miower = M/dg g5 =
FLAW POPULATION 2
Number of specimens:
Flaw identity: g (Table 3)
Spatial dist. [] Volume to.05 = 0.0 upper = “0 expl-tg o 5/"‘)
g Surface toos = "'0 lower = "'0 exp(-tg g5/ m) —
Estimates:
me=
A
0’9 =
og= (Weibull scale parameter)
FLAW POPULATION 3
Number of specimens:
Flaw identity:
Spatial dist. ] Volume
O Surface
0
Estimates:
m=
A
09 =
og= {Weibull scale parameter)

How were unidentified specimens treated?
Number of unidentified specimens:

O identity estimated by extrapolating fractography

01 Identity assigned arbitrarily to be same as the nearest
strength datum

O Assumed to belong to a distinct population

O Discarded as random events

FIG. 3 Sample Test Report

estimate of the Weibull modulus, the normalized valuggn() necessary to construct the 90 % confidence bounds are listed in
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Flaw key TABLE 2 Normalized Upper and Lower Bounds on the Maximum
91~ A Agglomerate Likelihood Estimate of the Weibull Modulus—90 % Confidence
90 i Inclusion Interval
[~ LG Largegrain
80 — MD Machine damage
P Pore Stress Flaw Stress Flav Number of Number of
2 50 |~ :g :x::;::‘n i;; LG :(1)2 LG Specimens, N Fo.o5 Jo.o5 Specimens, N Jo.os Fo.o5
& ?  Uncertain 585 497 5 0.683 2.779 42 0.842 1.265
& 20 Unbiased 572 496 6 0.697 2.436 a4 0.845 1.256
g ? ’ oS S 7 0.709  2.183 46 0.847 1.249
E w0 h=tos  mow 5 0729 189 0 os2 123
P Ay 553 472 . . . .
;, 5| (cg)=533MPa ., a52 10 0738  1.807 52 0854  1.229
= :3: :;5 1 0.745 1.738 54 0.857 1.224
e s27 - 12 0.752 1.682 56 0.859 1.218
2 524 431 13 0.759 1.636 58 0.861 1.213
T o4 518 429 14 0.764 1.597 60 0.863 1.208
518 an 15 0.770 1.564 62 0.864 1.204
5 ge‘gg;. §§8 16 0.775 1.535 64 0.866 1.200
e 17 0.779 1.510 66 0.868 1.196
L ' | I I 18 0784  1.487 68 0869  1.192
300 400 500 600 700 800 900 19 0788  1.467 70 0.871 1.188
Fracture stress, o, MPa 20 0.791 1.449 72 0.872 1.185
FIG. 4 Example—Failure Data with Fractography Information (13) 22 0.798 1.418 74 0.874 1.182
24 0.805 1.392 76 0.875 1.179
26 0.810 1.370 78 0.876 1.176
TABLE 1 Unbiasing Factors for the Maximum Likelihood 28 0.815 1.351 80 0.878 1.173
Estimate of the Weibull Modulus 30 0.820 1.334 85 0.881 1.166
32 0.824 1.319 90 0.883 1.160
Number of Unbiasing Factor, Number of Unbiasing Factor, gg 82;2 1282 182 8222 iigg
Specimens, N ur Specimens, N ur 38 0835 1283 110 0893 1141
5 0.700 42 0.968 40 0.839 1.273 120 0.897 1.133
6 0.752 a4 0.970
7 0.792 46 0.971
8 0.820 48 0.972 ) ) o _
9 0.842 50 0.973 point estimate of the characteristic strength, these percentile
10 0.859 52 0.974 distributions are listed in Table 3. The example in 10.3
11 0.872 54 0.975 d trates th f Table 3 i fructi d
12 0883 56 0.976 emonstrates the use of Table 3 in constructing upper an
13 0.893 58 0.977 lower bounds ong,. Note that the biased estimate of the
14 0.901 60 0.978 Weibull modulus must be used here. Again, this procedure is
15 0.908 62 0.979 . ; d . N hat Eq 27 |
16 0914 64 0.980 not appropriate for censored statistics. Note that Eq is not
18 0.923 66 0.980
20 0.931 68 0.981 TABLE 3 Normalized Upper and Lower Bounds on the Function
22 0.938 70 0.981 % Confid | |
o 0.943 72 0.982 t—90 % Confidence Interva
26 0.947 74 0.982
28 0.951 76 0.983 Number of Number of
30 0.955 78 0.983 Specimens, N toos to.os Specimens, N toos lo.os
2421 8'223 gg g'ggg 5 -1.247 1107 42 -0280  0.278
b 0.962 % 0.986 6 -1.007  0.939 44 -0273 0271
38 0.964 100 0.987 7 -0.874  0.829 46 -0.266  0.264
2 0.966 120 0.990 8 -0.784  0.751 48 -0.260  0.258
i i 9 -0.717  0.691 50 -0.254  0.253
10 -0.665  0.644 52 -0249  0.247
1 -0.622  0.605 54 -0.244  0.243
) 12 -0587 0572 56 -0.239  0.238
Table 2. The example in 10.3 demonstrates the use of Table & -0.557  0.544 58 -0.234  0.233
in constructing the upper and lower boundstinNote that the 14 —g-ggg g-igg gg —g-ggg 8332
statistical biased estimate of the Weibull modulus must be use 0489 0480 64 0292 0221
here. Again, this procedure is not appropriate for censoredr -0.471  0.463 66 -0.218  0.218
statistics. 19 Toas 0433 °  om  om
8.4 Confidence bounds can be constructed for the estimate;@ 0428 0421 72 0908 0208
Weibull characteristic strength. However, the percentile distri-22 -0.404  0.398 74 -0.205  0.205
butions needed to construct the bounds do not involve the sanfé 0384 0379 6 -0.202- 0202
! . -0.367  0.362 78 -0.199  0.199
normalized ratios or the same tables as those used for thg 0352 0347 80 0197 0197
Weibull modulus. Define the function as follows: 30 -0.338 0334 85 -0.190  0.190
A 32 -0.326  0.323 90 -0.184  0.185
t=min(G,/ o) 34 -0315  0.312 95 -0.179  0.179
27) 36 -0.305  0.302 100 -0.174 0175
. - .38 -0.296  0.293 110 -0.165  0.166
The 90 % confidence bound on the characteristic strength i, 0988 0285 120 0158 0159

obtained from the 5 and 95 percentile distributions. &for the
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applicable for developing confidence boundsagy therefore TABLE 4 Unimodal Failure Stress Data for Hipped (Hot
the confidence bounds @h, should not be converted through Isostatically Pressed) Silicon Carbide—Example 1
the use of Eq 8 and Eq 10. _ _
Specimen number, Strength, o}, Specimen number, Strength, o,

9. Fractography N MPa N MPa

9.1 Fractographic examination of each failed specimen is; 321 fé 2;8
highly recommended in order to characterize the fractures 358 43 528
origins. The strength of advanced ceramics is often limited by:_)1 323 jg ggi
discrete fracture origins that may be intrinsic or extrinsic to the g 291 46 546
material. Porosity, agglomerates, inclusions, and atypical large? 392 47 549
grains would be considered intrinsic fracture origins. Extrinsic & 2“133 2‘2 ggg
fracture origins are typically on the surface of the specimen andy 413 50 562
are the result of contact stresses, impact events, or adverse 414 51 563
environment. When the means are available to the experimer}2 e o o
talist, fractographic methods should be used to locate, identify;4 427 54 570
and classify the strength limiting fracture origin causing 15 438 55 573
catastrophic failure in an advanced ceramic test specimer{? o o o
Moreover, for the purpose of parameter estimation, eachg 442 58 580
classification of fracture origin must be identified as a surface9 444 59 583
fracture origin or a volume fracture origin in order to use the 2’ e o oy
expressions given in 7.6. The classification shall be based opp 452 62 501
the spatial distribution of a given flaw type (that is, volume- 23 452 63 591
distributed pores versus surface-distributed machining damz? pa o S
age) and not the specific location of a given flaw in a particulars 474 66 600
specimen. Thus, there may exist several classifications of7 476 67 610
fracture origins within the volume (or surface area) of the tests pils o o
specimens in a sample. It should be clearly indicated on the tesp 484 70 620
report (Fig. 3) if a fractographic analysis is not performed. The31 485 71 622
experimentalist is urged to follow the guidelines established in’; s I o
Practice C 1322 or the MIL—HDBK-790 concerning fractog- s 492 74 649
raphy cited in 2.2. 22 322 ;2 ggg

9.2 Optional—Perform a fractographic analysis and label 3, 506 77 664
each datum with a symbol identifying the type of fracture zs 512 78 674
origin. This can either be a word, an abbreviation, or a different® 512 79 674

symbol for each type of fracture origin, as depicted in Fig. 4.2 214 8 %

For example, the abbreviations in LG in Fig. 4 represents

failure due to a large grain. that (& o)y has units of stress-(volumé) ™ thus, 0.463 =
(3./6.48). The different values obtained from assuming surface

' . . . and volume fracture origins underscore the necessity of con-
10.1 For the first example, consider the failure data in Tabl%ucting a fractographic analysis

4. The data represent four-poiritapoint) flexural specimens 14 5" Next consider a sample that exhibits multiple active

fabricated from HIP'ed (hot isostatically pressed) siliconga,, distributions (see Table 5). Here each flexural test speci-

carbide (15). The solution of Eq 14 requires an iterative on \was subjected to a fractographic analysis. The failure
numerical scheme. Using the computer algorithm MAXL (see ) grap ySIS.

di X e btained origin was identified as either a volume or a surface fracture
Appendix X1), a parameter esthatem .6'48 was obtained. origin, and parameter estimates were obtained by using Eq 14
(Note that an unbiased value 6f= 6.38 is shown in Fig. 5;

i . and Eq 15. For the analysis with volume fracture origins,
See 10.3 and Eq 31.) Subsequent solution of Eq 15 yields #3. and the calculations yielded values af,= 6.79 and

value ofG 4= 556 MPa. These values for the Weibull param- ) — g76 \Mpa. For the analysis with surface fracture origins,

eters were generated by assuming a unimodal failure samplé 66, and the calculations yielded values of ;m21.0 and (
with no censoring (that ig, = N). Fig. 5 depicts the individual &) _ 693 MPa. For the most part, the data as plotted in Fig.
failure data and a curve based on the estimated values of tlléfg" near the solid curve whicr{ represents the combined
parameters. Next, assuming that the failure origins Wer%robability of failure as f0||0'WE(16):
surface distributed and then inserting the estimated value of

andé , into Eq 20 along with the specimen geometry (that is, Pr=1-1[1-(P)alll = (P)\]
L , =40 mm,L ;=20 mm,d = 3.5 mm, ancd = 4.5 mm) yields (28)

( 60) o = 137 MPain)°3% Note that (G,), has units of where @), is calculated by using the following equation:

10. Examples

stress-(areﬁ)m; thus, 0.309 = (2./6.48). Alternative, if one were o\ My
to assume that the failure origins were volume distributed, then (Poy=1- eXF{ <m> ]
the solution of Eq 18 yields §,),= 37.0 MPaf)°“¢3 Note (29)

10
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9 TABLE 5 Bimodal Failure Stress Data—Example 2
9
90 gug(]:?;;zg Strength, Fracture SN l;n;ibn?gr?sf Strength, Fracture
80 Np ' MPa  Origin type? P N ' MPa Origin®
® 50 1 416 v 41 671 s
& 2 458 S 42 672 S
o 3 520 v 43 672 s
2 2 4 527 Y] 44 674 s
2 5 546 s 45 677 s
g 10 6 561 v 46 677 s
<] 7 572 S 47 678 S
Z 5 8 595 v 48 680 s
3 9 604 S 49 683 S
| 10 604 s 50 684 s
o 1 609 v 51 686 s
Q. 12 612 S 52 687 S
1 13 614 s 53 687 s
14 621 Vv 54 691 s
5 15 622 S 55 694 S
16 622 s 56 695 s
' L ' L SN S 17 622 v 57 700 s
Fracture stress, o, MPa 19 625 S 59 703 S
FIG. 5 Example—Failure Data in 10.1 20 626 v 60 703 S
21 631 S 61 703 S
22 640 s 62 704 s
. . . — 23 643 v 63 704 s
and @), is calculated by using the following equation: 35, 649 s 64 706 s
o\ (MA 25 650 s 65 710 s
(Poa=1- ex;{ — <_> ] 26 652 Vv 66 713 s
(Go)a 27 655 s 67 716 s
(30) 28 657 s 68 716 s
. . 7 \% 71
The curve obtained from Eq 28 asymptotically approache§g 220 s 33 712 2
the intersecting straight lines that are defined by the estimated 660 s 71 716 s
parameters and calculated from Eq 29 and Eq 30. Inserting thH& gg; \S/ ;g ;g 2
estimated Weibull parameters (obtained from the analysis foi 662 s 74 795 s
volume fracture origins) into Eq 18 along with the specimenss 664 s 75 725 s
geometry .= 40 mm,L;=20 mm,d = 3.5 mm, ancb=45 36 664 S 76 726 S
H ~ — 0.442 . . 37 664 S 7 727 S
mm) yields (¢ o)~ 65.6 MPa-{n)~""< Inserting the estimated 54 666 s 78 729 s
Weibull parameters (obtained from the analysis for surfaces 669 s 79 732 s
fracture origins) into Eq 20 yields&),= 446 MPa-()°-%°. 40 671 s

10.2.1 It must be noted in this example that fractography A Volume fracture origin, V; surface flaw origin, S
apparently indicated that all volume failures were initiated
from a single distribution of volume flaws, and that all surface
failures were initiated from a single distribution of surface — 6.38 31)
flaws. Often, fractography will indicate more complex situa-
tions such as two independent distributions of volume flaws
(for example, inclusions of foreign material and large voids) in Mypper = Mg 05
addition to a distribution of surface flaws. Analysis of this type
of sample would be very similar to the analysis discussed in i ?'32/0'878 (32)
10.1, except that Eq 14 and Eq 15 would be used three times
instead of twice, and the resulting figure would include three Whereqg osis obtained from Table 2 for a sample size of 80

The upper bound o for this example is as follows:

straight lines labelled accordingly. failed specimens. The lower bound is as follows:
10.3 As an example of computing unbiased estimates of the Mower = M0 g.05

Weibull modulus, and bounds on both the Weibull modulus and

the Weibull characteristic strength, consider the unimodal =6.48/1.173

failure sample presented in 10.1. The sample contained 80 - (33)
specimens and the biased estimate of the Weibull modulus was :

determined to bé = 6.48. The unbiasing factor corresponding Whereqg o5 is obtained from Table 2. Similarly, the upper
to this sample size iIF = 0.984, which is obtained from Table bound ong, is as follows:

1. Thus, the unbiased estimate of the Weibull modulus is given (60)upper = Gp EXH— g o1
as follows: = (556)exp0.197/6.48
U _ s = 573MPa (34)
m~ =mx UF ) . )
wheret, o5 is obtained from Table 3 for a sample size of 80
=(6.48)(0.984 failed specimens. The lower bound 6y is as follows:

11
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(Gp)iower = Gg EXH —to o M) fractography; fracture origin; maximum likelihood; strength;
= (556)exp0.197/6.48 unbiasing factors; Weibull characteristic strength; Weibull
= 539MPa (35)

modulus; Weibull scale parameter; Weibull statistics
wheret, 45 is also obtained from Table 3.

11. Keywords
11.1 advanced ceramics; censored data; confidence bounds;

APPENDIXES
(Nonmandatory Information)

X1. COMPUTER ALGORITHM MAXL

X1.1 Using maximum likelihood estimators to compute wheref ( M) represents the right-hand side of Eq 14 @nd
estimates of the Weibull parameters requires solving Eq 14 anid not a root off ( ) but is reasonably close. Taking:
Eq 15 form and G, respectively. The solution of Eq 15 is A = i — iy
straightforward once the estimate of the Weibull modufhis (X1.2)
obtained from Eq 14. Obtaining the root of Eq 14 requires an
iterative numerical solution. In this appendix, the theoretical .
approach is presented for the numerical solution of these e s Aam)“| .
equations, along with the details of a computer algorithm 0="1{(my) + (Am)if (”b”*[ 2 ]f(an"'
(optional) that can be used to solve Eq 14 and Eq 15. A flow (X1.3)
chart of the algorithm, which is entitled MAXL, is presented in  If the Taylor series expansion is truncated after the first three
Fig. X1.1. terms, the resulting expression is quadratid ifin. The roots of
the quadratic form of Eq X 1.3 are as follows:

and setting Eq X 1.1 equal to zero, then:

X1.2 The MAXL algorithm employs a Newton-Raphson . e i
technique(17) to find the root of Eq 14. The root of Eq 14 Af, = _[ﬂ]+ [(ﬂ) —92 <ﬂ>]
represents a biased estimate of the Weibull modulus. Solution ’ F(m) F(m) Fim)
of Egq 15, which depends on thkiased value of m, is
effectively anunbiasedestimate of the characteristic strength. After obtaining A m, ,and knowingr,, Eq X 1.2 is then
The reader is cautioned not to corrattfor bias prior to solved for two values omthat represent improved (better than
computing the characteristic strength. This would yield anM o) estimates of the roots d6f( M), thus

incorrect value ofy,. This approach expands Eq 14 in a Taylor i, = My + Am,
series aboufh; (X1.5)
f(m) = f(fy) + (M — My)[f' ()] and
(M- ﬁb)z] " oa m, = Mo + Ay,
* rT i+ ’ (X1.6)
(X1.1) Eqg 14 is evaluated with both values i@ and the quantity

that yields a smaller functional value is accepted as the updated
" estimate. This updated valuefreplacesh, in Eq X 1.4, and
Input mo, €, the next iteration is performed. The iterative procedure is
failure data . . .
terminated when the functional evaluation of Eq 14 becomes
! less than some predetermined toleraace

Calculate roots

ofeq 14 X1.3 The following variable name list is provided as a
v convenience for interpreting the source code of the algorithm
o =M, |fm o] < [ty e =y rl\{léxlé_q [iz DDF—first and second derivatives with respect to
Yes l l No EPS—predetermined convergence criterion.
R N F—function defined in Eq 14.
Nol— |f(m,)] <e [fimg)|<e — No NLIM—maximum numbers of iterations allowed in determin-
Voo l Lves ing the root of Eq X 1.3.
NSUSP—number of suspended (or censored) daf)<
Evalute o NT—number of failure stresses.
ST—failure stress; an argument passed to MAXL as input.
FIG. X1.1 MAXL Flow Chart STNORM—the largest failure stress; used to normalize all

12
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failure  stresses to prevent computational overflows. X1.4 A listing of the FORTRAN source code of the
MO—updated value of. algorithm MAXL is given in Fig. X1.2, Fig. X1.3, and Fig.
MA, MB—values of the rootsh, and . X1.4.

WCS—estimated Weibull characteristic strength.
WMT—maximum likelihood estimate of the Weibull modulus.

FAE KA KA A I A AR AR I A A RN KA KA A I kA A AR I A A A A A AR AR I AR AR Ik kA hhkh kA xrhhhkFxhrk

PROGRAM MAXL

THIS PROGRAM CALCULATES TWO PARAMETER MAXIMUM
LIRKELIHOOD ESTIMATES FROM FAILURE DATA WITH AN
ASSUMED UNDERLYING WEIBULL DISTRIBUTION. THE
ATLGORTTHEM USES A NONLINEAR NEWTON-RAPHSON METHOD,
AND ACCOMODATES CENSCORED DATA.

by HILDEBRAND
PRENTICE-HALL, INC.; 1962

"APPLIED LIFE DATA ANALYSIS™
by NELSON
WILEY & SONS INC.; 1982

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
* REFERENCES: "ADVANCED CALCULUS FOR APPLICATIONS"
*
*
*
*
*
*
*
*

Fh A KA KA AT AT A A IR AT AR AR AR AT I A I A F R AR A T I A A A A I I A A I AR I A AR AR A AR AT A *hk

Qaaoaoaaoaaaoaaaaoaooaooaoaan

IMPLICIT REAL *8(A-H,0-%)

DOUBLE PRECISION ST(1000),S8T1(1000)

DOUBLE PRECISION MO, MA, MB, Ml

COMMON /DATA/ NFAIL, SUM1, NT, ST, ZERO, ONE
ZERO = 0.DO

ONE = 1.D0

TWO = 2.D0

EPS = 5.0D-10

NLIM = 500

MO = 10.0

-~- READ THE FAILURE DATA USING FREE FORMATS;
FILE CONTAINING FAILURE DATA IS ALLOCATED TO UNIT 8

aaoaa

DO 10 I = 1,1000
ST(I) = ZERO
ST1(I) = ZERO

10 CONTINUE

STNORM = ZERO

READ (8, *) NT

READ (8, *) NSUSP

PRINT*, NT, NSUSP

NFAIL = NT - NSUSP

DO 20 I = 1,NT
READ(8,*) ST(I)

c PRINT*,I,ST(T)
STNORM = DMAX1 (STNORM, ST (I))
20 CONTINUE

—=~— NORMALIZE FAILURE DATA WITH LARGEST VALUE

aann

DO 30 I 1,NT
ST(I) = ST(I)/STNORM
C PRINT*,T,ST(I)
30 CONTINUE

SUML = ZERO
PRINT*, NFAIL
DO 40 I = 1,NFAIL
READ (8, *) ST1(I)
ST1(I) = ST1(I)/STNORM
PRINT*, I,ST1(I)
SUML = SUM1 + DLOG(ST1(I)}
40 CONTINUE

~-- THE FUNCTION F IS DEFINED BY EQ 14 OF ASTM STANDARD C 1239

~—-—- EVALUATE F(MO) AND THE ASSOCIATED SUMS WHICH ARE USED TO CALCULATE
THE DERIVATIVES OF F WITH RESPECT TO M

QOO0

FIG. X1.2 FORTRAN Source Code of the Algorithm MAXL

13
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CALL SUM (MO, SUM2, SUM3, F)

c
CCCCCCCLCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCeceeeeeeeceeeceee
E R R N R i g B e S

* NEWTON-RAPHSON ROQT SOLVER *
LR R R R R R R S R T T

—-— USE TAYLOR SERIES SERIES EXPANSION (INCLUDING SECOND DERIVATIVES)
FOUND ON PAGE 362 OF "ADVANCED CALCULUS FOR APPLICATIONS BY
HILDEBRAND (FIRST EDITION, FIFTH PRINTING} TO DETERMINE THE ROOTS
OF THE FOLLOWING EQUATION, WHICH IS QUADRATIC IN DELTA M.

il

F(MO+DELTA M) 0
= F{MO) + DELTA M * F'(M0D)

+ (DELTA M)**2 * F'f'(M0O)/2

HERE MO IS THE CURRENT ESTIMATE CF M.
THE FORMULA YIELDS TWO ROOTS, DELTA MA AND DELTA MB.
MA AND MB ARE THE UPDATED VALUES OF M, WHERE

M(A,B) = MO + DELTA M(A,B)

F(MA) AND F(MB) ARE BOTH EVALUATED. THE ESTIMATE THAT PRODUCES THE
SMALLEST ABSOLUTE VALUE OF F IS CHOSEN FOR THE NEXT ITERATION.

IF THE QUADRATIC EQUATION DOES NOT HAVE REAL ROOTS, AN
APPROXIMATE SOLUTION FOUND ON PAGE 363 OF HILDEBRAND IS USED, I.E

.y

DELTA M = - (F(MO)/F'(MO)) *
(1 + (DELTA M **2) * (F''(MO)/2*F(M0)))

WHERE ON THE RIGHT-HAND-SIDE OF THE EQN, DELTA M IS TAKEN AS THE
FIRST ORDER APPROXIMATION, DELTA M = -F(MO)/F' (MO}

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCeCceceeeeeeeeeeecee

oacaaonaoQooaOOoOOaOaOQQOaoOOOaaa0n

DO 60 K = 1,NLIM

c
C --- CALCULATE THE FIRST AND SECOND DERIVATIVES OF THE FUNCTION F
o]
DSUM3 = ZERO
DDSUM3 = ZERO
DO 50 I = 1,NT
DSUM3 = DSUM3+DLOG{ST (I))*(ST(I))**MO*DLOG(ST(I))
DDSUM3 = DDSUM3 + (DLOG(ST(T)))**3*(ST(I))**MO
50 CONTINUE
DSUM2 = SUM3
DDSUM2 = DSUM3
DF = (SUM2 * DSUM3 - SUM3 * DSUMZ)/(SUM2**2) + ONE/(MO**2)
c
DDF = ((SUM2 * DDSUM3 - SUM3 * DDSUM2)/SUM2**2)
3 - (TWO * DSUM2 * (SUM2 * DSUM3 - SUM3 * DSUM2)/SUM2**3)
$ - TWO/MO**3
RADICAL = (DF/DDF)**2 - TWO*F/DDF
IF (RADICAL .GE. ZERO) THEN
c
C --- CALCULATE THE ROOTS OF THE QUADRATIC EQUATION
c
RADICAL = DSQRT (RADICAL)
MA = MO - (DF/DDF) + RADICAL
MB = MO - (DF/DDF) - RADICAL
o]
C --— CALCULATE F(MA), F(MB), AND THE ASSOCIATED SUMS
C
CALL SUM (MA, SUM2A, SUM3A, FA)
CALL SUM (MB, SUM2B, SUM3B, FB)
C
C ~-- SELECT THE BETTER ROOT BY COMPARING THE ABSOLUTE
[of VALUE OF THE FUNCTION F
C

IF (DABS(FA) .LE. DABS(FB)) THEN
FIG. X1.3 Continued
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MO = MA
F = FA
SUMZ = SUMZA
SUM3 = SUM3A
ELSE
MO = MB
F = FB
SUM2 = SUM2B
SUM3 = SUM3B
END IF
ELSE
c
C --- IF THE ROOTS ARE COMPLEX, USE THE APPRCXIMATE SOLUTION
C
Ml = MO ~ (F/DF)* (ONE+F*DDF/ (TWO*DE**2}))
c
[of --- CALCULATE F(M1) AND ITS ASSOCIATED SUMS
C
CALL, SUM (M1, SUM2, SUM3, F)
MO = M1
END IF
c
c -—-— CONVERGENCE CRITERION:
c COMPARE THE ABSOLUTE VALUE OF THE FUNCTION F
C WITH A PRESELECTED TOLERANCE
C
IF (DABS(F) .LE. EPS} GO TO 70
60 CONTINUE
C
C -—— MAXTMUM NO. OF ITERATIONS REACHED BEFORE SATISFACTORY VALUE OF M FOUND
c
WRITE (6,100) NLIM
GO TO 999
C
C ——- SATISFACTORY ESTIMATE OF WEIBULL MODULUS ATTAINED
o}
70 WMT = MO
c
C —--— COMPUTE THE ESTIMATE OF THE WEIBULL CHARACTERISTIC STRENGTH (WCS)
C

RWMT = 1.0/WMT
WCS = ((SUM2/NFAIL)**RWMT) *STNORM
WRITE(6,110) WMT
WRITE(6,120) WCS
100 FORMAT (/,2X, 'NO SOLUTION FOUND AFTER ',I4,' ITERATIONS OF THE
SNEWTON-RAPHSON METHOD', /)

110 FORMAT(/,2X,' THE ESTIMATED WEIBULL MODULUS = ',F8.3,/)
120 FORMAT(/,2X,' THE ESTIMATED CHARACTERISTIC STRENGTH = ',F8.3,/)
999 CONTINUE

STOP

END

SUBROUTINE SUM (M, SUM2, SUM3, F)
IMPLICIT REAL*S (A-H, O-Z)
DOUBLE PRECISION ST(1000), M
COMMON /DATA/ NFAIL, SUM1, NT, ST, ZERO, ONE
SUM2
SUM3
DO 10 I = 1,NT
SUMZ = SUM2 + ((ST(I))**M)
SUM3 = SUM3 + (DLOG(ST(I)) * ((ST(I))**M))
10 CONTINUE

Hon
o
=
o
O

F = (SUM3/SUMZ) - (SUM1/NFAIL) - (ONE/M)
RETURN
FNT)

FIG. X1.4 Continued

X2. TEST SPECIMENS WITH UNIDENTIFIED FRACTURE ORIGINS

X2.1 Paragraphs 7.3.1.1 to 7.3.1.4 describe four optiondjfied origin to a previously identified fracture origin classifi-
(a) through (d), the experimentalist can utilize when unidenti-cation. Many specimens with unidentified fracture origins have
fied fracture origins are encountered during fractographigome fractographic information that was judged to be insuffi-
examination. The following four subsections further define thecient for positive identification and classification. (It should be
four options, and use examples to illustrate appropriate anfloted that the degree of certainty required for “positive
inappropriate situations for their use. identification” of a fracture-initiating flaw varies from one

X2.1.1 Option (a) involves using all available fractographicfractographer to another.) In such cases, Option (a) allows the
information to subjectively assign a specimen with an uniden-
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experimentalist the use of the incomplete fractographic inforfracture origins as a separate flaw distribution in the censored
mation to assign the unidentified fracture origin to a previouslydata analysis. This may occur when the fractographer cannot
identified flaw classification. This option is preferred whenrecognize the flaw type because features of the flaw are
partial fractographic information is available. As an example particularly subtle and difficult to resolve. In such cases, the
consider a tensile specimen where fractography was inconcldractographer may consistently fail to locate and classify the
sive. Fractographic markings may have indicated that théracture origin. Examples of flaw types that are difficult to
origin was located at or very near the specimen surface, but thdentify include: machining damage, zones of atypically high
fracture-initiating flaw could not be positively identified. Other microporosity, and mainstream microstructural features. Op-
specimens from the sample were positively identified as failingion (c) may be appropriate if a set of specimens with
from machining flaws. It is recognized that machining damageunidentified fracture origins have similar and apparently re-
is often difficult to discern. Therefore, in this case it would belated features. Unfortunately, there are many situations where
appropriate to use Option (a) and infer that the origin isOption (c) is incorrect and where use of this option could result
machining damage. The test report (see 7.9 and Fig. 3) must substantial errors in parameter estimates. For instance,
clearly indicate each specimen and where this (or any otheonsider the case where several unidentified specimens are
option is used for classifying unidentified specimens. Theconcentrated in the upper tail (high strength) of the strength
conclusion of machining damage in this example, howeverdistribution. These fracture origins may belong to a classifica-
could be erroneous. For instance, the fracture-initiating flawion that has been previously identified, but the smaller flaws at
may have been a “mainstream microstructural featu(@8) the origins were harder to locate, or possibly the origins were
(which is also typically difficult to resolve and identify) that lost due to the greater fragmentation associated with high-
happen to be located near the specimen surface. The possibilirength specimens. Use of Option (c) to treat these high-
of erroneous classification such as this are unavoidable in th&trength specimens as a new flaw classification would create a
absence of positive identification of fracture origins. bias error of unknown magnitude in the parameter estimates of
X2.1.2 Option (b) involves assigning the unidentified frac-the proper flaw classification.
ture origin to the fracture origin classification of the test X2.1.4 Option (d) involves the removal of test specimens
specimen closest in strength. The specimen closest in strengttith unidentified fracture origins from the sample (that is, the
must have a positively identified fracture origin (not onestrengths are removed from the list of observed strengths). This
assigned using Options (a) through (d)). As an example of useption is rarely appropriate, and is not recommended by this
of this option, consider a tensile specimen that shattered upqgoractice unless there is clear justification. Option (d) is only
failure such that the fracture origin was damaged and lost, butalid when test specimens with unidentified fracture origins are
fracture was clearly initiated from an internal flaw. Otherrandomly distributed through the full range of strengths and
specimens from the sample included positive identification oflaw classifications. There are few plausible physical processes
inclusions and large pores as two active volume-distributiorthat create such a random selection. An example where Option
fracture origin classifications. When the fracture strengths frongd) is justified is a data set of 50 specimens where the first 10
the total data set were ordered, the specimen closest in strendgthctured specimens (in order of testing) were misplaced or
to the specimen with the unidentified fracture origin was thedestroyed after testing but prior to fractography. The uniden-
specimen that failed from an inclusion. Use of Option (b) fortified specimens were therefore created by a process that is
this test specimen would then allow the unidentified origin torandom. That is, the 10 strengths are expected to be randomly
be classified as an inclusion. Justification for Option (b) ariseslistributed through the strength distribution of the remaining
from the tendency of concurrent (competing) flaw distributions40, and the 10 origin classifications are expected to be
to group together specimens with the same origin classificatiorandomly distributed through the origin types of the remaining
when the test specimens are listed in order of fracture strengtd0. (In this example, Option (b) could also be considered.)
Therefore, the most likely fracture origin classification of aOption (d) is not appropriate where unidentified fracture
random unidentified specimen is the classification of theorigins are a consequence of high-strength test specimens
specimen closest in strength. The above example can kshattering virulently such that the fragment with the origin is
modified slightly to illustrate a situation where Option (b) lost. This situation occurs with more frequency in the upper tail
would be inappropriate. If the fracture origin classification of (high strength) of the strength distribution, and thus the
the specimen closest in strength was a machining flaw, theanidentified fracture origins would not occur at random
Option (b) would lead to a conclusion inconsistent with thestrengths.
fractographic observation that failure occurred from an internal
flaw. Igraé)tographic evidence should always supersede conclu-xz_'2 Paragraphs X2.2.11t0 X2'2:6 expand on ‘h’? proper use
sions from Option (b). and implementation of the four options described in X2.2.1.
X2.1.3 Option (c) assumes that the unidentified fracture X2.2.1 When partial fractographic information is available,
origins belong to a new, unclassified flaw type and treats thes@ption (a) is preferred and should be used to incorporate the
information as completely as possible into the assignment of
fracture origin classification. Option (d) should be used only in

8“Mainstream microstructural features” or “ordinary microstructural features” ynusual situations where a random process for creation of
are fracture origins that occur at features such as very large grains that are part Elfnidentified origins can be justified

the ordinary distribution of the microstructure, albeit at the large end of the . . . .
distribution of such features. These are distinguished from abnormal microstructural X2.2.2 Situations may arise where more than one option

features such as inclusions or grossly large pores. will be used within a single data set. For instance, of five

16



iy c 1239

specimens with unidentified origins, three might be classifiedias in estimates of parameters can result. When used for
based on partial fractographic information using Option (a)design applications, proper choice of options from X2.1 is
while the remaining two, which have no fractographic hints,critical and should be carefully justified in the test report. In
might then be classified using Option (b). such design applications, it may be prudent to carry out the
X2.2.3 When specimens with unidentified fracture originsanalysis for more than one option to determine the sensitivity
are contained within a data set, the test report (see 7.9) mugi choice of an improper option. For instance, in a group of 50
include a full description of which specimens were unidenti-specimens with 10 unidentified origins (no partial fracto-
fied, and which option or options were used to classify thegraphic information), the analysis could be conducted first
specimens. using Option (b) then again using Option (c). The results from
X2.2.4 If the unidentified fracture origins occur frequently the two analyses could then be used individually to estimate the
in the lower tail of the strength distribution, then caution andbehavior of the designed component. If a conservative predic-
extra attention is warranted. Strength analyses are typicallgion of component behavior is warranted, the more conserva-
extrapolated to lower strengths and lower probabilities oftive result of the two analyses should be used.
failure than those observed in the data set. Proper statistical X2.2.6 Finally, if most or all of the test specimens within a
evaluation and assignment of fracture origin classificationsample contain unidentified fracture origins, then censored data
near the lower-strength tail is therefore particularly importantanalysis according to this practice is not possible. The strengths
because the low-strength distribution typically dominates exshould be plotted on Weibull probability axes and, if the data
trapolations of this type. reveal a pronounced bend (concave upwards) which is charac-
X2.2.5 When only a few fracture origins are unidentified, teristic of two or more concurrent flaw distributions, then the
effects of incorrect classification are minimal. When more tharmethods described in this practice cannot be used without
5 or 10 % of the origins are unidentified, substantial statisticafurther refinements.
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